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Large-scale Hartree-Fock self-consistent field calculations, employing extended 
Gaussian basis sets, and configuration interaction studies are performed to 
calculate the energy hypersurface of the electronic ground state of the water 
molecule and to investigate the accuracy requirements in view of the deter- 
mination of molecular spectroscopic constants. From the calculated points on 
the hypersurface the theoretical equilibrium geometry, the force field through 
fourth order, the spectroscopic constants o)i, xij, ~i as well as the Darling- 
Dennison and Fermi resonanceconstants are evaluated. The CI surface yields 
an equilibrium structure for H 2 0  with re=0.9501 A and 7e= 105.33 ~ (r~xv= 
0.9572 A and c~ex p = 104.52~ The vibrational levels are obtained with a systema- 
tic error of about 2 percent and the rotational constants to about 1 percent 
compared to spectroscopic data. The relative energy maximum corresponding 
to the linear structure with e = z  is calculated to be 11890cm -1, within the 
error limits of the values deduced from experimental measurements. 
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1. Introduction 

Due to its outstanding importance in chemistry and biology the water molecule in 
its electronic ground state has been subject to a large number of experimental and 
theoretical investigations during the last decade [1]. From the point of view of 
theoretical studies the water molecule is of particular interest because it is a simple 
example of a general polyatomic molecule and it is small enough to be treated by 
accurate quantumchemical methods. In molecular spectroscopy the water mole- 
cule is considered as a prototype of an asymmetric top and it shows some interesting 
resonance effects. Therefore H20 was chosen in the present study in order to check 
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the accuracy requirements on the ab initio calculated energy hypersurface and the 
theoretical force field in connection with the evaluation of vibrational and rota- 
tional energy levels within reasonable error limits. A similar analysis was recently 
performed for a series of linear triatomic molecules of astrophysical interest [2, 3]. 

A short summary of some of the most relevant ab initio calculations, which have 
been performed on the electronic ground state of water during the past few years, 
has been given by Diercksen et al. [4] and can also be found in recent papers by 
Rosenberg et al. [5, 6]. The best energy value obtained within the single deter- 
minant SCF approximation was published by Popkie et al. [7], E(SCF)= 
-76.06598 hartree, which is above the expected Hartree-Fock limit by about 
0.002 hartree. Going beyond this Hartree-Fock limit the lowest variational energy 
was determined by Meyer [8] using the PNO-CI method [9]: E(PNO-CI)= 
-76.36834 hartree. This value accounts for approximately 82 percent of the esti- 
mated total correlation energy of water. Using a conventional CI approach 
Rosenberg and Shavitt [5] calculated recently an energy ofE(CI) = - 76.33980 har- 
tree, which includes about 75 percent of the total correlation energy. 

Alml6f et al. [10] determined from an ab initio SCF energy hypersurface only parts 
of the force field through fourth order. Their harmonic vibrational frequencies co i 
differ from the experimental values by 3-7 percent. In systematic studies Ermler 
and Kern [11] as well as Krohn et al. [12] investigated the influence of vibrational 
motions on several one-electron properties. The force constants through fourth 
order and the vibrational constants needed for this purpose were evaluated from 
an ab initio energy hypersurface generated within the single determinant Hartree- 
Fock SCF approximation using a double-zeta quality Gaussian basis set augmented 
by polarization functions to approximate the molecular orbitals. Recently these 
studies were improved by Rosenberg et al. [5, 6] employing an extended Slater type 
basis set (39 STO's) and including correlation energy effects by conventional CI 
calculations. However, in these studies the energy hypersurface was only deter- 
mined in a range very close to the potential minimum. This introduces an uncer- 
tainty into the analytical potential expression for the outer parts of the electronic 
potential, which might, influence the accuracy of the higher vibrational levels. This 
uncertainty was removed in the present study by including nuclear configurations 
with relatively large deviations from the equilibrium geometry. 

In Sect. 2 the computational details of this study are presented, describing the 
calculation of the energy hypersurface as well as the evaluation of the force con- 
stants and the spectroscopic constants. In Sect. 3 the results are discussed and com- 
pared to data deduced from experimental measurements and to the recent study of 
Rosenberg, Ermler, and Shavitt [6], abbreviated in the following as RES. 

2. Computational Details 

2.1. Calculation o f  the Energy Hypersurface 

The potential energy hypersurface was computed for 55 different nuclear con- 
figurations of the water molecule using a combination of the MUNICH [13] and 
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the MOLECULE [14] program systems. The evaluation of the basic integrals 
over Gaussian functions, the Hartree-Fock self-consistent field (SCF) iterations, 
and the four-index transformation of the basic integrals to the molecular orbital 
basis were carried out by the MUNICH programs. For the calculation of the 
correlation energy contributions a version of the MOLECULE CI program 
(CIMI method [15]) interfaced to the MUNICH system was used. 

The molecular orbitals were approximated as linear combinations over Gaussian 
type basis functions (GTO's) located at the atomic centres. The total basis set used 
consisted of (13s 8p 2d) functions at the oxygen center and of (8s 2p) functions at 
the hydrogens [16]. These functions were contracted to [7s 5p 2d] and [4s 2p] 
functions for oxygen and the hydrogens, respectively, in order to reduce the num- 
ber of linear parameters in the SCF procedure and also the number of possible 
configurations in the CI expansion. The exponents of the polarization functions 
were optimized in SCF calculations. The basis set employed yields a SCF energy 
for water of E(SCF) = - 76.064140 hartree at the SCF equilibrium structure with 
re= 0.9387 A and ae = 106'48~ The energy value is about 0.003 hartree above the 
Hartree-Fock limit. At the experimental equilibrium geometry a number of electric 
and magnetic first and second order properties have previously been calculated 
with the present basis set utilizing the coupled Hartree-Fock approach [17]. The 
results indicate that the basis set used in the present study is flexible enough to 
describe the electronic charge distribution properly. 

All single and double excitations which can be generated within the molecular 
orbital basis from the single determinant Hartree-Fock reference state were 
included in the CI wavefunction. This amounts to a total of 30380 configurations 
of correct spin symmetry for an asymmetric structure of the water molecule. 
Within this approximation a CI energy of E(CI-SD)=-76.333723 hartree was 
obtained at the CI equilibrium structure with r e = 0.9501 A and ~e = 105.33~ This 
energy value contains a correlation contribution of 0.270 hartree which accounts 
for 73 percent of the estimated total correlation energy. Subtracting the correlation 
contributions originating from the oxygen ls orbital, about 77 percent of the total 
valence correlation energy are covered by this CI-SD calculation. 

As has been shown by Rosenberg and Shavitt [5] a considerable improvement of 
the equilibrium geometry and of the spectroscopic constants for water can be 
achieved by using Davidson's approximate formula [18] for estimating the con- 
tribution of certain quadruple excitations to the CI energy in a closed shell mole- 
cule. This leads to an energy value of E(CI-SDQ)=-76.348304 hartree and to 
an improved equilibrium geometry with re=0.9545 A and c~e= 104.98 ~ These 
values differ from the experimental geometry (rexv=0.9572 A and eexv= 104.52 ~ 
only by -0.3 percent in the OH-distance and by +0.4 percent in the bond angle. 

The zero-point vibrational energy level is about 4635 cm-1 (0.0211 hartree) above 
the minimum of the potential energy hypersurface and the highest experimentally 
known vibrational level correspon .ding to v~ = 2, v2 = 0, and v 3 = 3 has an energy of 
22130 cm-1 (0.1008 hartree) relative to the minimum. Since this study was aimed 
to calculate the anharmonic force constants as accurate as possible within the 
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present approximation, the different nuclear configurations were chosen such 
that some of the calculated points on the energy hypersurface get close to this 
highest measured vibrational level. Thus the maximum deviations from the 
equilibrium geometry were taken up to _+0.4 bohr (22 percent) in the bond 
distance and _+ 25 ~ (24 percent) in the bond angle. This leads to a maximum energy 
difference of about 0.154 hartree for CI-SD relative to the potential minimum. In 
the previous ab initio calculations on water [6] the maximum deviations from the 
equilibrium structure were limited to be about -+0.06 bohr (3 percent) and +_6 ~ 
(6 percent). The corresponding maximum energy difference was therefore 0.0029 
hartree, which is only about 14 percent of the zero-point vibrational energy. 

A few additional points were calculated in the present study for the linear geo- 
metry of water (e = 180 ~ and various rl and r2 distances in order to determine 
the relative energy maximum (energy hump). 

2.2. Evaluation of  Force Constants and Spectroscopic Constants 

For the water molecule with its three internal degrees of freedom the ab initio 
calculated energy points corresponding to 55 different nuclear configurations 
describe parts of a three-dimensional energy hypersurface. Around the potential 
minimum this surface can be approximated by a Taylor series expansion in terms 
of the three internal coordinates Ar i = r i -  rl e) (i = 1, 2, 3), where rl e) are the equili- 
brium geometry parameters and where the Ar i (i= 1, 2) refer to the two OH- 
stretchings and Ar3 to the HOH-bending coordinate ~. Truncation of the expan- 
sion after the fourth order terms leads to the following expression: 

V= V~ +ft(Ar x + Ar2) +f3Ar 3 

+�89 t(Ar21 + Ar2)+fl2ArlAr2 +f~3(Arl + Ar2)Ar3 
1 2 +~f33Ar3 + ~ f l l  1(Ar31 + Ar32) + �89 le(Ar~ + Ar2)ArlAre 
1 2 +7f113(Arl + Ar~)Ar3 +f123ArtArzAr3 

+ l f133(Art 2 1 3 1 4- 4 + Arz )Ar3  + g f 3 3 3 A r 3  +~zf i l  1 l (Ar l  + Ar2) (1) 

++f~l12(Ar~ + Ar~)ArlAr2 1 3 +g f l  113(Arl + Ar~)Ar3 

+�88 2 2 1 23(Ar1+Arz)AraAr2Ar3 122AraAr2 +7 f l  l 
+�88 hr{ d- Ar~)Ar 2 + �89 t233ArlAr2Ar 2 

+ l f1333(Ar t  + Ar2)Ar~ t+~f3333Ar34 

The expansion coefficients f~, f's, f~sk, f~jkl are defined to be the linear, quadratic, 
cubic and quartic force constants, respectively. They form the force field through 
fourth order. The linear force constantsft and f3 in the above expansion are zero 
due to the fact that the potential has a minimum at Ar t = A t  2 =ZI r  3 =0. 

The fitting of the expansion (1) to the ab initio calculated energy points proceeds 
in two steps: Starting from a plausible initial guess for the expected equilibrium 
parameters rl e) and using the calculated points, the set of expansion coefficients 
{f} is determined in a linear least squares fit. Since the initial guess usually does 
not match accurately the true minimum of the potential curve, the linear force con- 



Electronic Ground State of Water 237 

stants f will not be zero. Therefore in a second step improved equilibrium geo- 
metry parameters are obtained by the Newton-Raphson method. With these new 
rle)-values the fitting procedure is entered again and the process is repeated until 
the linear force constants f fall below a certain convergency threshold. The 
potential expression thus obtained represents the ab initio calculated energy sur- 
face within the accuracy limits of the above expansion (1). The final standard 
deviations of the different force constants provide an estimate of the overall 
quality of the fit. They do not give, however, error limits for the individual force 
constants. 

The rotational constants of a given vibrational state v are approximately written as: 

x /  d~\ 

where ~x are the rotational interaction constants, vg the vibrational quantum num- 
bers, dg the degeneracies of the i'th vibration, and where the equilibrium rotational 
constants Xe are defined as: 

h 
X e - 4 ~ c i  x (3) 

with I x being the moment of inertia for the axis X. The vibrational levels (undis- 
turbed by resonances) are obtained by the expansion: 

G ( v ) = ~ c o i ( v g + ~ ) + g ~ x i ~ ( v i + ~ ) ( v ~ + ~ )  (4) 

where co i are the harmonic wavenumbers and xij the anharmonicity constants. 

The water molecule H2160, however, shows some resonance effects. The Darling- 
Dennison resonance between the levels (vl/>2, v 2, v3) and (v1-2, v2, v3+2) as 
well as the Fermi resonance between the levels (v~ ~> 1, v2, v3) and (v~- 1, v 2 +2, 
v 3) have a strong effect on the vibrational levels and have thus to be taken into 
account. 

The spectroscopic constants and the resonance constants ? can be expressed as 
functions of the equilibrium geometry parameters and the force constants: 

)(e = f ( re )  
coi = f(re, fij) x (5) 

~i , 7F = f ( re ,  fiS, f i jk) 
Xij, ~o = f ( r e ,  f / j ,  J(ijk,2jkl)" 

For the actual calculations a program by Hoy et al. [19] is used in the present 
study. The vibration-rotation Hamiltonian expressed in normal coordinates has 
been developed by Wilson and Howard [20] and simplified by Watson [21]. In a 
perturbation treatment through second order [22, 23] the eigenvalues of this 
Hamiltonian are determined in terms of the force constants {q0}, which are defined 
in a normal coordinate representation. Therefore the above program [19] first 
performs a transformation of the force field {f} given in internal coordinates into 
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the set of [q)}, which are then used to evaluate the spectroscopic constants e) i, 
xij, c~ x as well as the resonance constants 7v and 7D- 

3. Results and Discussion 

The ab initio calculated points on the energy hypersurface are listed in Table 1. 
The first entry corresponds to the experimental geometry. The entries 40, 41, 42 
represent the ab initio results for the theoretical equilibrium structures Of HzO on 
the different levels of accuracy SCF, CI-SD, and CI-SDQ, respectively, using the 
first 39 points of Table 1 in the fitting procedure. In order to give the minimum 
region of the potential a somewhat higher weight in the fit, 13 additional points 
were chosen close to the experimental equilibrium structure (entries 43-55 in 
Table 1). They are actually identical to points 1-13 of Table 1 in Ref. [6]. Inclusion 
of these further points, however, does not lead to any substantial change in the 
theoretical equilibrium values. This indicates that different selections among the 
ab initio calculated points have practically no influence on the final theoretical 
results. 

Table 1. Ab intio calculated points of the energy hypersurface of H20 

rl(OH) r2(OH) ~ ( H O H )  F4SCF) E(CI-SD) E(CI-SDQ) 
No. (bohr) (bohr) (deg.) (hartree) (hartree) (hartree) 

1 1.8089 1.8089 104.52 -76.063446 -76.333646 -76.348305 
2 1.4000 1.4000 104.52 -75.918229 -76.179737 -76.191342 
3 1.5000 1.6000 104.52 -76.017546 -76.281895 -76.294485 
4 1.5000 2.0000 104.52 - 76.017510 -76.286678 -76.301029 
5 1.6000 1.6000 104.52 -76.039545 -76.304911 -76.317854 
6 1.6000 1.7500 104.52 -76.051522 -76.318562 -76.332096 
7 1.7000 1.9000 104.52 -76.057885 -76.327928 -76.342542 
8 1.7500 1.8089 104.52 -76.063497 -76.332968 -76.347365 
9 1.7500 1.8500 104.52 -76.062280 -76.332273 -76.346860 

10 1.7500 2.0000 104.52 -76.051761 -76.323782 -76.339130 
11 1.8089 1.5000 104.52 -76.029377 -76.296079 -76.309508 
12 1.8089 1.7000 104.52 - 76.061677 -76.330552 - 76.344737 
13 1.8089 1.9000 104.52 -76.059675 - 76.331062 - 76.346157 
14 1.8500 1.8089 104.52 -76.062233 -76.332959 -76.347810 
15 2.0000 2,0000 104.52 -76.040108 -76.315538 -76.332141 
16 2.1000 1,6000 104.52 -76.028908 -76.300583 -76.315866 
17 2.1000 1,8089 104.52 -76.041067 -76.315315 -76.331508 
18 2.1000 2,0000 104.52 -76.029488 -76.306439 -76.323634 
19 2.2000 2,2000 104.52 - 75.994162 -76.275953 -76.295078 
20 1.5000 1,5000 80.00 -75.963635 -76.228677 -76.241142 
21 2.1000 2,1000 80.00 -76.007653 -76,288401 -76.306691 
22 1.8089 1.8089 90.00 -76.056276 -76,327405 -76.342250 
23 1.5500 1.9000 95.00 -76.034308 -76.303126 - 76.317252 
24 1.7500 1,7500 100.00 -76.062368 - 76,331314 -76.345492 
25 1.8500 1.8500 100.00 -76.060334 -76,331831 -76.346928 
26 1.9500 1.7000 100.00 - 76.053541 -76.324482 -76.339399 
27 1.7500 1.7500 110.00 -76.063480 -76.332064 - 76.346163 
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q ( O H )  r2(OH ) ~ ( H O H )  E(SCF) E(CI-SD) E(CI-SDQ) 
No. (bohr) (bohr) (deg.) (hartree) (hartree) (hartree) 

28 1.8500 1.8500 110.00 -76.060406 -76.331445 -76.346438 
29 1.6500 1.8089 110.00 -76.057814 -76.325962 - 76.339909 
30 2.0500 1.8089 115,00 -76.043478 -76.316567 -76.332358 
31 1.8089 1.8089 120.00 -76,058608 --76.328451 -76.343016 
32 1.5000 1.5000 130.00 - 75.990315 - 76.253904 -76.266177 
33 2.1000 2.1000 130,00 -76.001026 -76.278652 -76.296176 
34 1.8089 1.8089 175.00 -76,009066 -76.279895 -76.294526 
35 1.6000 1.6000 180.00 -75.995248 -76.262086 -76.275259 
36 1.7500 1.7500 180,00 -76.011365 -76.281049 -76.295253 
37 1,8089 1.8089 180.00 - 76.008406 - 76.279232 - 76.293862 
38 1.8500 1,8500 180.00 -76.004093 -76.275722 -76,290656 
39 2,0000 2.0000 180.00 -75.976985 -76.251565 - 76.267655 
40 1.7739 1.7739 106,48 -76.064140 -76.333390 -76.347719 
41 1.7955 1.7955 105.33 - 76.063892 -76.333723 -76.348246 
42 1,8038 1.8038 104.98 -76.063649 -76.333702 -76.348304 
43 1.8111 1.8111 104,45 --76.063356 -76.333615 -76.348296 
44 1,8111 1.8111 107.45 -76.063332 -76.333473 -76.348126 
45 t.8111 1.81tl t01,45 -76.062890 -76.333291 --76,348002 
46 1.8411 1.8411 104.45 -76.061692 -76.332720 -76.347680 
47 1.78ll 1.78tl 104,45 - 76,064025 - 76.333534 --76.347944 
48 1.8411 1.8411 107.45 -76.061580 -76.332481 -76.347412 
49 1.8411 1.8411 101.45 -76.061321 --76.332500 -76,347493 
50 1.7811 1.7811 107.45 --76.064093 - 76,333492 --76.347876 
51 1,7811 1.7811 101.45 -76,063461 --76.333104 - 76.347542 
52 1,8111 1.8111 110.45 -76.062842 -76.332888 -76.347518 
53 1.8111 1.8111 98,45 -76.061912 -76.332481 -76.347227 
54 1.8711 1.8711 104.45 -76.059138 -76.330954 --76.346203 
55 1.7511 1.7511 104.45 -76.063586 -76.332364 --76.346511 

Table 2, Experimental and ab initio calculated equilibrium geometry parameters and 
min imum energies for H 2 0  

r e (A) % (deg.) E (hartree) 

Experimental 0,9572 104,52 - 76.4807 
SCF [7] 0.9572 " 104.52 " -76 .06598 (0.5) 
SCF[12J  0.9413 ( - 1 . 7 )  106.11 (1.5) -76 .0510  (0.6) 
P N O - C I [ 9 ]  0.9572 a 104.52 " -76.368340 (0,1) 
CI -SD[6]  0.9527 ( - 0 . 5 )  104.93 (0.4) -76.339802 (0.2) 
CI-SDQ•6] 0.9573 ( - 0 . 0 1 )  104.58 (0.06) -76.354795 (0.2) 

Present study: 
SCF 0.9387 ( - 1 . 9 )  106.48 (1.9) -76,0641 (0.5) 
CI-SD 0.9501 ( - 0 . 7 )  105.33 (0.8) -76.333723 (0.2) 
CI-SDQ 0.9545 ( - 0 . 3 )  104.98 (0.4) -76.348304 (0.2) 

"Geometry  parameters not  varied. 
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The final equilibrium parameters and the corresponding energy values are com- 
pared to experimental data and some recent highly accurate theoretical results in 
Table 2. The percent deviations of the theoretical results from experiment are 
given in parentheses. 

Table 3 shows the calculated force constants {f} through fourth order defined in 
internal coordinates. They are compared to different sets of {f} obtained from 
experimental data and from the theoretical study of RES [6]. Numbers in paren- 
theses give standard deviations of the least squares fit in the last decimal places. 
The first set of experimental force constants is taken from Mills [23]; they are 
determined by a fit to the spectroscopic constants co i, xi j ,  7D, and ~x for H2160 
and D2160 published by Benedict et al. [24]. The second experimental set is due 
to a fit to slightly different spectroscopic constants resulting from an analysis of 
the most recent experimental vibrational frequencies [25]. In this fit the experi- 
mental value for the Fermi resonance constant Yv for H2160 [26] was included. 
Comparison between these two sets indicates the present uncertainty in the force 
constants deduced from spectroscopic measurements, particularly as far as the 
fourth order terms are concerned. Among these f~k~ several constants are con- 
strained to be zero because of the lack of available experimental data. 

The harmonic force constants f~j obtained within the SCF approximation are 
found to be too large compared to the experimental values, indicating that parti- 
cularly the SCF surface is too steep around the energy minimum. This deficiency 
is largely reduced on the higher levels of accuracy. The average error in the values 
for fix, f12, and f33 decreases from 20 percent (SCF) to 10 percent (CI-SD) and 
to 3 percent (CI-SDQ). Most of the other theoretical force constants show a 
similar trend. Since the actual numerical values of the experimental force constants 
of higher order become rather uncertain, it is not possible to deduce precise error 
estimates for the theoretical results. It can be expected, however,that the average 
deviations of the present ab initio force constants (CI-SDQ) from their experi- 
mental values increase from 3 percent for the second order to 10-30 percent for 
the third order terms. The most important fourth order force constant f l  11 ~ is 
obtained with an error of about 15 percent. The constantsf~ 113 andf1123 (experi- 
mental values undetermined) have probably the right order of magnitude, whereas 
for other theoretical f~jk~ values already the sign is uncertain. Inclusion of the 
additional points 43-55 of Table 1 in the fitting procedure does not produce any 
significant change in the present results. The force constants through fourth order 
calculated by RES [6] are essentially very similar to the results obtained in the 
present study. 

The standard deviations given in parentheses in Table 3 provide an estimate of 
the quality of the potential fit. Since rather large distortions from the equilibrium 
geometry were partly taken into account, one can expect the standard deviations 
of the present fit to become large. In the recent papers by Krohn et al. [12] and 
RES [6] only geometries very close to the potential minimum were considered and 
a very smooth potential fit with small standard deviations was therefore obtained. 

In order to get more reliable results for the third and fourth order force constants 
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it is possible to employ a potential expansion through higher order in the internal 
coordinates. This increases, on the other hand, the number of points enormously, 
which are needed for the potential fit. Such an extension of the computational 
effort was avoided at the present stage, because it would make the force constants 
calculations relatively expensive for a small molecule like H 2 0 .  

Since the SCF surface was shown to be too steep around the energy minimum, 
only the CI data will be used for the further purpose of this study. The final deter- 
mination of the spectroscopic constants requires a transformation of the force 
constants { f }  into the set of constants {~0} in a normal coordinate representation. 
In Table 4 the ~0~s k and q~isk~ values for H2160 are listed as they are obtained from 
the data in Table 3. The difference between the two experimental sets is mainly due 
to the fact that in the second one the experimental value for the Fermi resonance 
constant 7v is used to determine the force constants { f }. This influences particularly 
the values of ~0122, the 7v itself, and of ~01122 and of q02222 in Column 2. The 
average error of the ab initio calculated cubic and quartic force constants ~0 is 
about 20 percent. The theoretical result seems to confirm the value for ~Ozze2 in 
Column 2, whereas the theoretical results for ~o122 and q)1122 are much closer to 
the ones in Column 1. From the ab initio calculations it is thus not possible to 
decide between the two experimental sets. 

The ab initio {~0} values are needed [19] to determine the theoretical spectroscopic 
constants. Table 5 contains various sets of equilibrium rotational constants X e 
( X = A ,  B, C) and rotational interaction constants ~x for H2160 .  The constants 
in the first column are directly deduced from rotational spectra of H2160. In the 
second column, the experimental equilibrium structure data derived from the 
rotational constants of H2 a 60, HD a 60, and D 2 1 6 0  1-24] were used to re-evaluate 
the X e, while the ax were obtained from the experimental force constants of Table 3. 
These values are compared to the results of the present ab initio calculations and to 
those of RES. 

Table 4. Cubic and quartic force constants cp for H2t60 defined in normal coordinates 
(numbers in cm 1) 

Exp. Exp. CI-SD CI-SDQ CI-SD CI-SDQ 

(Ref. [23]) (Ref. [25]) (Ref. [6]) (Present work) 

(Pill -1876.9 -1924.9 -1824.4 -1826.4 -2053.9 --2071,5 
~0112 91.2 76.1 70.6 80.6 96.3 109.2 
q)122 346.0 192.2 323,4 303.0 358.2 337,6 
(~ -1786.8 -1855.0 -1832.7 -1838.2 -2012.4 -2019.5 
~02z z -396.0 -425.6 -267.9 -255.1 -300.9 -289.1 
q~233 291.4 294.4 261.0 279.8 314.0 316.1 

q01111 863.6 945.3 740.8 723.3 819.7 856.0 
qh l z z  -361.8 -218.4 -308.2 -301.9 -362.0 -357.4 
~P1133 758.3 867,6 746.7 842.6 808.3 842.5 
q)2222 56.7 -72.2 -45.7 -102.5 -24.9 -37.4 
q)2233 -412.0 -337.1 -375.5 -328.8 -151.2 -140.6 
q~333a 746.8 864.2 748.5 861.1 794.0 828.5 
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Table 5. Experimental and theoretical equilibrium rotational constants X~(X= A, B, C) 
and rotational interaction constants ex for H2~60 (in cm- ~) 

243 

Exp. Exp. CI-SD CI-SDQ CI-SD CI-SDQ 

(ReL [23]) (Ref.[25]) (Ref.[6]) (Present work) 

A e 27.379 27.4346 27.953 27.466 28.367 27.875 
B e 14.5844 14.5962 14.653 14.581 14.655 14.588 
C e 9.5256 9.5273 9.614 9.525 9.663 9.576 

~ 0.750 0.7495 0.667 0.699 0.856 0.905 
~ -2.941 -2.8966 - 2,632 -2.539 -2.837 -2.742 
~ 1.253 1.2656 1.136 1.180 1.389 1.395 

ef 0.238 0.2456 0.214 0.217 0.254 0.261 
ef -0.160 -0.0282 -0.165 -0.168 -0.150 -0.153 
e~ 0.078 0.0774 0.099 0.097 0.105 0.117 

e~ 0.2018 0.1953 0.17l 0.177 0.210 0.219 
eft 0.1392 0.1720 0.146 0.149 0.141 0.143 
e~ 0.1445 0.1461 0.137 0.142 0.169 0.175 

The rotational constants X e for the three main axes of inertia have a different 
dependence on the equilibrium geometry parameters: the constant Ae is mainly 
determined by �89 e cos ~ e / 2 ) -  2, whereas B e by �89 e sin ~ e / 2 ) - 2 ,  and C e by ~(Fe)l -2. 
Since from the ab initio calculations the equilibrium OH distance is obtained 
slightly too small and the H O H  bond angle too large, these errors compensate 
each other somewhat in the case of  the theoretical B e value, but multiply each 
other to some extent in A e. Within the CI-SDQ approximation the accuracy of the 
X e values becomes thus about 2 percent for Ae, between 0.1 and 0.5 percent for B e 

(depending on the experimental reference data), and about 0.5 percent for C e . The 
C e value which is essentially only a function of the OH bond is almost within the 
experimental uncertainty. Since the theoretical equilibrium geometry parameters 
of  RES are slightly more accurate, their X e results are closer to the experimental 
values. 

The c~ x values which are directly determined from spectroscopic measurements 
are reproduced by those derived from the experimental force constants with a 
discrepancy of about 2 percent, which is within the experimental error limits. The 
accuracy of the present ab initio calculated c~ x values is about 10 percent, and there 
is no obvious improvement from CI-SD to CI-SDQ. However, since the total 
anharmonicity correction in (2) is small compared to the Xe values, the accuracy 
of the rotational constants X~, depends still essentially on the quality of  the equili- 
brium geometry parameters. The present theoretical X~ results have an average 
error between 0.3 and 0.9 percent compared to the experimental values. Particularly 
A v is in the average closer to experiment than the corresponding RES results. 

The vibrational constants co i and xij as well as the resonance constants YD and 7F 
for H 2 t60  are listed in Table 6. The two experimental sets in the table were derived 
from vibrational frequency data in different ways [24, 25], and the theoretical 
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Table 6. Experimental and theoretical vibrational constants for H z16 0 (in cm 1) 

Exp. Exp. CI-SD CI-SDQ CI-SD CI-SDQ 

(Ref. [23]) (Ref. [25]) (Ref. [6]) (Present work) 

co I 3 8 3 2 . 1 7  3831.16 3930.6 3855.1 3953.6 3868.9 
co 2 1 6 8 4 . 4 7  1651.49 1701.9 1687.1 1685.0 1670.1 
e93 3 9 4 2 . 5 3  3941.17 4035.1 3958.5 4062.4 3980.2 

xl~ -42.58 -42.04 -42.3 -45.4 -60.6 -62.9 
x12 -15.93 -17.67 -13.9 -14.5 -14.7 -14.9 
x13 --165.82 -162.38 --165.1 -150.3 -227.1 -232.6 
X22 --16.81 --19.49 --17.2 --19.8 --18.6 --18.5 
XZ3 --20.22 --18.15 --21.3 --11.7 45.9 46.2 
x33 47 .57  -47.42 -48.3 -44.4 -65.7 -66.9 

7D -77.52 -77.18 -84.8 -77.4 -111.4 -113.0 
7v (-18.86) -192.49 -323.4 -303.0 -358.2 -337.6 

values were obtained from the corresponding force constants in Table 3. In analogy 
to the ab init io harmonic force constants the present theoretical e) i values are 
slightly too large compared to experiment: the average deviation is 2 to 3 percent 
for CI-SD and about 1 percent for CI-SDQ. RES obtained the same error for 
CI-SD, their improvement for CI-SDQ, however, is somewhat better except for 
the bending frequency. This may be due to the fact that larger distortions from the 
equilibrium bond angle were taken into account in the present study providing a 
more accurate description of the rather flat bending potential of H20.  Because of 
the inaccuracy of the higher order force constants the present results for Xi j  , 7D, 

and 7v are very uncertain (average error about 50 percent) and there is no obvious 
improvement from CI-SD to CI-SDQ. 

From the data in Table 6 the vibrational levels for }[2160 c a n  be calculated. In 
Table 7 the present theoretical transition frequencies from the vibrational levels 
(vl, v 2 , v3) to the zero-point vibrational level (v 1 =0,  v 2 --0, v 3 --0) are listed and 
compared to experimental measurements. Using only the ab initio CI-SD harmonic 
frequencies coi the general structure of the water spectrum is already obtained 
quite reasonably. The actual frequency values, however, are systematically too 
large by about 10 percent. Taking into account the anharmonicity correction and 
the Darling-Dennison resonance this average error is reduced to about 3 percent 
for CI-SD and to about 2 percent for the CI-SDQ data. The same percentage 
errors are obtained for the RES results except for their CI-SDQ approximation 
which gives transition frequencies slightly closer to experimental measurements 
(average error about 1.6 percent). 

In addition to the structure of the vibrational spectrum, the shape of the bending 
potential is also of  some interest. With V e = 0 and r 1 = r 2 = r e, the potential expres- 
sion (1) can be simplified to 

1 2 1 3 1 ,~- 
V(oO=~f33Ao~ q-gf333A~ "t'-~f3333Ao~ (6) 
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Table 7. Vibrational levels in cm-~. Experimental and 
present ab initio results 

Exp. 
Vl v2 v3 (Ref. [25]) CI-SD(co) CI-SD CI-SDQ 

0 0 0  0 0 0 0 
0 1 0 1595 1685 1663 I649 
0 2 0 3152 3370 3290 3261 
i 0 0 3657 3954 3712 3619 
0 0 l 3756 4062 3840 3753 
0 3 0 4667 5055 4879 4835 
1 1 0 5235 5639 5360 5253 
0 1 1 5331 5747 5550 5448 
0 4 0 6136 6740 6430 6373 
l 2 0 6775 7324 6972 6850 
0 2 1 6872 7432 7222 7106 
2 0 0 7201 7907 7259 7071 
1 0 1 7250 8016 7325 7140 
0 0 2 7445 8125 7592 7415 
1 3 0 8274 9009 8546 8410 
0 3 1 8374 9117 8857 8727 
2 1 0 8762 9592 8905 8701 
1 1 1 8807 9701 9019 8820 
0 1 2 9000 9810 9336 9145 
0 4 1 9834 10802 10454 10311 
1 2 1 10329 11386 10677 10463 
0 2 2 10523 11495 11047 10842 
3 0 0 10600 11861 10595 10307 
2 0 1 10613 11970 10615 10329 
1 0 2 10869 12078 10983 10701 
0 0 3 11032 12187 11200 10931 
0 5 1 11248 12487 12015 11858 
1 3 1 11813 13071 12297 12069 
0 3 2 12012 13180 12723 12505 

w h e r e  A~ = e - e e -  F o r  the  l inear  g e o m e t r y  o f  the  w a t e r  m o l e c u l e  (c~ = 180 ~ this  

p o t e n t i a l  has  a re la t ive  m a x i m u m  (energy  h u m p )  which ,  however ,  c a n n o t  be  c o n -  

s ide red  as an  e n e r g y  ba r r i e r  fo r  the  v i b r a t i o n a l  m o t i o n .  Th is  m a x i m u m  can  in f luence  

the  ene rgy  levels  fo r  exc i ted  b e n d i n g  v i b r a t i o n s  and  since it is no t  very  large  the  

wa te r  m o l e c u l e  has  ac tua l ly  to be r e g a r d e d  as q u a s i l i n e a r  fo r  s o m e  h ighe r  exci ted 

states .  H o u g e n  et al. [27, 28]  were  ab le  to  desc r ibe  the  o b s e r v e d  p u r e  b e n d i n g  

v i b r a t i o n s  u t i l i z ing  a L o r e n t z  type  p o t e n t i a l  f u n c t i o n  

/(B 
V(~189 kp2 q (c 2 +p2)' (7) 

w h e r e  p = rr - c~. T h e  p a r a m e t e r s  k, c, and  K B were  f i t ted to  e x p e r i m e n t a l  da ta .  W i t h  

this e m p i r i c a l  p o t e n t i a l  they  o b t a i n e d  for  the re la t ive  m a x i m u m  a va lue  o f  h = 

10900 c m -  t [27]  and  h = 11050 c m -  1 [28] .  U s i n g  the  p re sen t  ab initio fo rce  c o n -  

s tants  in (6) the  he igh t  o f  the  r e l a t ive  m a x i m u m  is he re  d e t e r m i n e d  to be  h = 

11790 c m -  1 fo r  C I - S D  a n d  h = 11890 c m -  1 for  C I - S D Q ,  whi le  the  d i r ec t  e n e r g y  
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difference at the experimental equilibrium bond distance (entries 1 and 37 of 
Table 1) gives about h= 11940cm -1 in both approximations. With the experi- 
mental force constants from Table 3 the energy maximum is h = 12190 cm- 1 and 
h = 11640 cm-1, respectively. This means that the present theoretical results are 
within the experimental error limits. Since linear configurations for H20 were not 
included in the RES study, the corresponding energy maximum can only be esti- 
mated to be 14040 cm- 1 for CI-SD and 11630 cm- 1 for CI-SDQ. 

Sorbie and Murrell [29] defined an analytical potential expression for H20 using 
the force constants of Hoy et al. [ 18]. With this empirical potential they calculated 
the height of the relative maximum to be h = 9485 cm- 1, which is certainly too low. 
This indicates that it is very difficult to find an analytic potential empirically that is 
able to reproduce the potential hypersurface equally well over the whole region. 

Sorbie and Murrell pointed out that for the linear configuration of the water 
molecule the OH bond distance decreases by about 0.006 A compared to the value 
for the bent equilibrium structure, and that for this OH distance the hump should 
be reduced by about 10 cm- 1. According to the present CI results the OH distance 
decreases by about Ar=0.035 A and h by about A h =  300 cm-1, while the experi- 
mental force constants of Table 3 give Ar.~0.05 A~ and Ah~400cm-1.  

4. Final Remarks 

Large scale self-consistent field and single reference state configuration interaction 
calculations were performed in order to determine parts of the energy hypersurface 
and the molecular force field of water. From the theoretical force constants 
through fourth order the rotational and vibrational spectroscopic constants were 
evaluated by a perturbational approach. The accuracy of the present results was 
checked by an extensive comparison to experimental data and to other accurate 
ab initio calculations published recently by Rosenberg et al. [6]. 

It appears that the quality of the Gaussian basis set (54 GTO's) employed here is 
equivalent to the Slater type basis used by RES [6]. The difference in the standard 
deviations particularly of the ab initio fourth order force constants of the present 
study and of RES is partly due to the different selections of points on the energy 
hypersurface. More reliable fourth order force constants can be obtained by 
employing a potential expansion through higher order. However, as was already 
pointed out, this would increase considerably the number of points necessary for 
the potential fit. 

Compared to RES relatively large distortions from the equilibrium structure of 
H20 were taken into account in the present study. In order to achieve a higher 
accuracy of the ab initio points on the energy hypersurface it will therefore be 
necessary to generate the molecular orbitals within the MCSCF approximation 
including at least those configurations allowing for the correct dissociations of 
H20 instead of using only the single determinant SCF approach. The CI-SD 
treatment should then also incorporate a corresponding multi-reference state. 
The results of such a study will be published in a forthcoming paper. 
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Because of the large uncertainties of  the force constants of higher order derived 
from experimental data and because of the rather involved dependency of the 
rotational and vibrational frequencies on the individual force constants, it is 
necessary to evaluate the observable frequencies from the theoretical force field in 
order to judge the accuracy of  the ab initio calculated energy hypersurface. This 
can be done in different ways: by using a perturbational approach, as was done in 
the present study, or by using variational methods [30-32], and finally by solving 
the rotational-vibrational Schr6dinger equation directly by numerical integrations 
at the ab initio calculated points on the potential surface [33]. The variational 
methods have the advantage that all the resonances of  the water molecule are 
included, while within the present perturbation scheme off-diagonal terms are 
neglected except for Coriolis and Darl ing-Dennison resonances. However, the 
perturbational  treatment is computationally much faster than the variational 
methods and it appears further to be a useful approach, since the experimental 
frequencies used to calculate a set of  force constants are reproduced within the 
experimental error limits. The inaccuracies of  the ab initio calculated surface are 
anyway larger than the approximations inherent in the perturbational method. 

The direct method was recently used by Whitehead and Handy [33]. They 
calculated 72 points on the potential surface of water within the CI-SD approxi- 
mation using a Slater-type orbital basis of  improved double-zeta quality plus 
polarization function (a total of  32 STO's) and solved the rotational-vibrational 
Schr6dinger equation numerically for the vibrational eigensolutions. The accuracy 
of these solutions is determined essentially by the number  of  grid points available 
for the numerical integration. Using the 72 ab initio calculated points Whitehead 
and Handy were able to obtain only the fundamental frequencies. The errors of  
these vi values are similar to those of  the present study ranging from 1.4 to 2.0 
percent. The advantage of the direct method is clearly that no explicit potential 
expression is needed; it is, on the other hand, computationally very expensive. 
Using the perturbational approach a minimum of only 22 points on the energy 
hypersurface is needed for the polynomial fit. With the force constants available 
the calculation of the spectroscopic constants for all possible isotopic species of  
water can then be performed with a negligible amount  of  computer  time. 
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